본문 바로가기
하드웨어/시스템 반도체

집적회로, 소자 미세화 시대로 나아가다

by bantomak 2023. 6. 21.

소자 미세화 시대

집적회로 탄생의 진정한 의미는 소자 미세화 시대를 열었다는 점에 있다. 소자 미세화 이야기에 앞서, 집적 공정에 관해 조금 더 알아보자. 반도체 집적 공정은 평면 공정, 조각, 인쇄 공정, 융단 폭격 등으로 특징지어 이야기할 수 있다.

융폭
반도체 소자 집적 공정과 아파트 단지 건축의 비유

이해를 돕기 위해 아파트 단지 짓는 것을 예로 들어보자. 반도체 집적 공정으로 아파트 단지를 짓는다면 이렇게 할 것이다. 우선 전체 단지 땅을 평평하게 만든다. 그 위에 시멘트를 일정한 두께로 전체 단지를 완전히 덮는다. 시멘트가 남아 있어야 할 부분(벽이 될 부분)과 없애야 할 부분(집 내, 외부 공간이 될 부분)을 인쇄하여 표시하고 벽이 될 부분을 보호할 수 있는 것으로 덮는다. 이후 단지를 융단 폭격하여 보호가 안 되어 있는 시멘트 부분을 모두 날려버린다. 이렇게 하면 벽만 남고 나머지 부분의 시멘트는 날아가게 된다. 이러한 방법을 반복하며 아파트 전체 동의 한 층, 한 층을 동시에 쌓아 올린다. 현재 건설 공법과는 달리 아파트 단지의 모든 동을 한꺼번에 지어 올라가는 식이다.

 

어찌 보면 재료를 낭비하는 방법으로 보인다. 또 아파트 단지 전체 면적을 처리해야 하므로 필요한 기계 장비도 매우 비쌀 것이다. 왜 이런 방법으로 만들어야 할까? 아파트 10동을 짓는다면 현재와 같이 한 동, 한 동 짓는 건설 공법이 재료도 아끼고 훨씬 경제적이다. 그러나 지어야 할 아파트가 수만 동이 된다면, 아니 수백억 동이 된다면 어떻게 될까? 이렇게 아파트의 동 수가 엄청나게 많아지면 전혀 다른 이야기가 된다. 한 동, 한 동 만드는 식으로는 이 단지를 만드는 데 너무 많은 시간이 소요된다. 거의 불가능하다고 볼 수 있다. 이래서 이러한 반도체 집적 공정을 이용해 만들어야만 하는 것이다. 이때 덮는 공정을 증착, 필요한 부분과 필요없는 부분을 인쇄하는 공정을 리소프라피(Lithography), 깎아내는 공정을 식각이라고 부른다.

 

크기가 다른 다이(Die)를 갖고 있는 웨이퍼

 

이러한 현대적인 반도체 집적 공정의 특징은 한 웨이퍼 위에 소자를 만드는 비용이 그 안에 그려진 소자의 수에 거의 영향을 받지 않고 비슷하다는 점이다. 즉, 웨이퍼 위에 같은 성능의 다이(Die, 칩을 만드는 단위)한 개를 그려 넣고 만드는 것이나 1,000개를 만드는 것이나 비슷한 비용이 든다. 그러나 한 개를 만드는 비용을 비교하면 1/1,000이 되므로 굉장한 원가 절감이 가능해진다. 그러므로 집적회로의 시대에는 트랜지스터와 같은 단위 소자를 작게 만들어 같은 면적에 더 많은 다이를 넣는 회사가 더 많은 돈을 벌 수 있는 것이다.

 

단위 소자를 작게 만다는 것은 회사에만 유리한 것이 아니다. 소자를 더 작은 사이즈로 만들면 구동 전류가 커지며 더욱 빠른 성능의 소자가 된다.그래서 칩 성능이 향상된다. 이처럼 성능 좋은 칩이 소비자의 니즈를 충족시킨다. 결국, 스케일링(Scailing)이라 불리는 소자 미세화는 회사와 고객 모두를 좋게 만드는 길인 것이다. 그러므로 이때부터는 소자를 작게 만드는데 총력을 다하는 시대가 된다.

 

집적회로를 가장 많이 사용한 전자제품은 컴퓨터다. 컴퓨터용 CPU나 메모리를 만드는 데는 집적회로가 큰 역할을 했다. CPU와 같은 논리 회로는 우리의 두뇌가 할 수 있는 여러 가지 논리 연산, 그리고 덧셈, 뺄셈, 나눗셈, 곱셈 등의 수리 연산을 해야 한다. 필요한 연산의 숫자가 늘어나며 사용되는 스위치 소자의 숫자도 기하급수적으로 늘어갔다.

 

이러한 스위치 소자의 증가를 가능하게 한 것이 집적회로다. 집적회로로 만들어지는 메모리 역시 더 많은 정보를 저장하기 위해서는 집적하는 메모리 셀의 숫자를 늘려야 했다. 소자 미세화를 통해서 셀의 크기를 줄여 더욱 많은 셀을 같은 면적에 넣는 것이다.

 

반도체 산업의 선순환

반도체 산업의 선순환

덕분에 현재 우리는 엄청난 수의 단위 소자(트랜지스터, 캐퍼시터 등)를 한 칩에 넣고, 새로운 제품도 사용할 수 있게 됐다. 예컨대 낸드플래시의 경우 기존 컴퓨터 하드디스크를 대체하고 SSD등 새로운 시장을 형성했다.

 

이처럼 소자 미세화를 통해 반도체 성능이 발전하면서 새로운 제품 시장을 만들어내고 이것이 다시 반도체의 발전을 이끄는 선순환 체제가 완성된 것이다. 이 모든 것이 집적회로의 등장에 의해 이루어졌다고 해도 과언이 아니다.

 

출처

 

[반도체의 이해 2편] 반도체 발전의 결정적 순간 ‘집적회로의 탄생’ (2/7)

반도체 역사에서 가장 중요한 순간은 언제였을까? 여러 가지 장면이 떠오를 것이다. 필자는 반도체 산업에서 가장 중요한 장면으로 ‘반도체 집적회로가 만들어진 순간’을 꼽고 싶다.

news.skhynix.co.kr

댓글